A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor.

نویسندگان

  • Ming-Cheng Luo
  • Yong Q Gu
  • Frank M You
  • Karin R Deal
  • Yaqin Ma
  • Yuqin Hu
  • Naxin Huo
  • Yi Wang
  • Jirui Wang
  • Shiyong Chen
  • Chad M Jorgensen
  • Yong Zhang
  • Patrick E McGuire
  • Shiran Pasternak
  • Joshua C Stein
  • Doreen Ware
  • Melissa Kramer
  • W Richard McCombie
  • Shahryar F Kianian
  • Mihaela M Martis
  • Klaus F X Mayer
  • Sunish K Sehgal
  • Wanlong Li
  • Bikram S Gill
  • Michael W Bevan
  • Hana Simková
  • Jaroslav Dolezel
  • Song Weining
  • Gerard R Lazo
  • Olin D Anderson
  • Jan Dvorak
چکیده

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat.

The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D), genome convergence and divergence of the tetraploid (Triticum turgidum AABB, and Triticum timopheevii AAGG) and hexaploid (Triticum aestivum, AABBDD) species. We analyzed Acc-1 (plastid acetyl-CoA carboxylase) and Pgk-1 (plastid 3-phosphoglycerate kinase) genes to determine ph...

متن کامل

The origin of spelt and free-threshing hexaploid wheat.

It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed...

متن کامل

Discovery of High-Confidence Single Nucleotide Polymorphisms from Large-Scale De Novo Analysis of Leaf Transcripts of Aegilops tauschii, A Wild Wheat Progenitor

Construction of high-resolution genetic maps is important for genetic and genomic research, as well as for molecular breeding. Single nucleotide polymorphisms (SNPs) are the predominant class of genetic variation and can be used as molecular markers. Aegilops tauschii, the D-genome donor of common wheat, is considered a valuable genetic resource for wheat improvement. Our previous study implied...

متن کامل

Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii

As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due t...

متن کامل

Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum).

Common wheat (Triticum aestivum) has for decades been a textbook example of the evolution of a major crop species by allopolyploidization. Using a sophisticated extension of the PCR technique, we have successfully isolated two single-copy nuclear genes, DMC1 and EF-G, from each of the three genomes found in hexaploid wheat (BA(u)D) and from the two genomes of the tetraploid progenitor Triticum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 19  شماره 

صفحات  -

تاریخ انتشار 2013